
 Proceedings of 20th International Congress on Acoustics, ICA 2010 

23-27 August 2010, Sydney, Australia 

 

ICA 2010 1 

Figure 1. Spectrograms of bird vocalisation 
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ABSTRACT 

We have been developing an automatic classification system for bird vocalisations.  Many biologists have been 
using the early one-dimensional version of our system and we have been working on a two-dimensional method.  
The software extracts a spectrogram from the bird vocalisation using the LPC spectrum analysis and classifies the 
images of spectrogram using a similarity scale and cluster analysis.  We use the new similarity scale called the 
“Two-dimensional Geometric Distance” that has been developed by Jinnai and Boucher.  In this paper, we intro-
duce the principles of the Two-dimensional Geometric Distance, demonstrate the two-dimensional pattern match-
ing software, and describe design considerations in a new automatic classification system for bird vocalisations.  
Testing has shown an order of magnitude improvement in accuracy over the one-dimensional method. 

1. INTRODUCTION 

We have developed an automatic classification system for 
bird vocalisations over the past seven years.  In general, when 
a human researcher classifies bird vocalisations manually, 
two methods are used as follows.  In the first method, the 
researcher compares the bird vocalisations by simply listen-
ing to them; a small number of experts are very good at this, 
but most researchers are not.  In the second method, the 
sound spectrum patterns are extracted from bird vocalisations 
and the researcher compares these images to classify them by 
sight.  Spectrograms (sonograms) are usually produced using 
the computationally efficient FFT, which generates much 
subtle detail that is largely redundant in recognition.  Fur-
thermore, because the FFT is ideal for long steady-state sig-
nals it produces artefacts when applied to short bird vocalisa-
tions.  The LPC (Linear Predictive Coefficient) is much more 
suitable for such transient signals and does not generate arte-
facts.  Hence we have adopted the LPC, which despite its 
computational complexity is not an issue with fast modern 
computers.  Human researchers using either their hearing or 
spectrograms, become fatigued after about 20 minutes, which 
limits the duration of effective concentration.  In order to 
automate this process, we have been developing software 
that: (1) extracts spectrograms from bird vocalisations using 
the LPC spectrum analysis, (2) matches images of the spec-
trogram using a similarity scale, and (3) classifies the bird 
vocalisations using cluster analysis.  

The similarity scale works as follows: for vocalisations for 
which a researcher would recognize two patterns as similar to 
each other, the computer software outputs a small value, and 
for vocalisations for which a researcher would recognize the 

two patterns as dissimilar, then the computer software out-
puts a large value.  In conventional cluster analysis, the 
similarity scales known as the Euclidean distance and cosine 
similarity are widely used to measure likeness.  Conventional 
similarity scales compare the patterns using one-to-one map-
ping.  The result of the one-to-one mapping is that the dis-
tance metric is highly sensitive to noise, and the distance 
metric changes in a staircase pattern when a difference occurs 
between peaks of the standard and input patterns. 

As an improvement, we have developed a new similarity 
scale called the Geometric Distance (GD) [11].  Although the 
GD is measured in degrees, it is far from linear though there 
is no simple function that can give a mathematically defini-
tive measure of the distance. As a means of visualising the
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differences it can be considered as an approximation of loga-
rithmic, thus  a GD of  3 degrees is separated from 4 degrees 
by a power of 10.  We have been developing the automatic 
classification software for bird vocalisations (and other 
sounds) using the Geometric Distance.  As of early 2010, we 
have commercial software that extracts LPC spectrum pat-
terns (frequency-power) from bird vocalisations (or other 
sounds), and classifies them using One-dimensional Geomet-
ric Distance (1-d GD) [2].  We have now moved on to a 
method that extracts spectrograms (time-frequency-power) 
from the bird vocalisations, and processes them using Two-
dimensional Geometric Distance (2-d GD).  From experimen-
tal testing, we have found that the 1-d GD performed signifi-
cantly better than the Euclidean distance and cosine similarity, 
and that the 2-d GD performed significantly better than the 1-
d GD. 

In this paper, we introduce the principles of the 2-d GD, 
demonstrate the two-dimensional pattern matching software, 
and describe design considerations in a new automatic classi-
fication system for bird vocalisations using the 2-d GD and 
cluster analysis.  Moreover, we describe the biological sig-
nificance. 

2. THE SPECTROGRAM OF BIRD SOUNDS 

Figure 1 shows the spectrograms (time-frequency-power) 
extracted from the vocalisations of the critically endangered 
Coxen’s Fig-Parrot (Cyclopsitta diophthalma coxeni).  These 
spectrograms have been calculated using the method of Lin-
ear Predictive Coefficient (LPC).  We have set the analysis 
conditions of the bird vocalisation with the 44.1kHz sampling 
frequency, 16 bit quantization, 11.4 msec frame width, 0.23 
msec frame period, 441 total frames, 16 order LPC, 1Hz to 
22050Hz frequency range, 86Hz frequency resolution, and 
0dB to -80dB logarithmic power spectrum. 

From the upper and lower spectrograms shown in Figure 1, it 
is evident that the peak frequencies are 6461Hz and 5772Hz 
respectively and the two patterns are not similar to each other.  
Moreover, as a result of comparing these two bird vocalisa-
tions aurally, we have confirmed that these two vocalisations 
are not similar to each other. The software registers the simi-
larity or Geometric Distance as 4.2 degrees.  Identical vocali-
sations would register a distance of zero degrees, whereas 
reasonably similar vocalisations might register from 1.0 to 
3.5 degrees. 

3. THE SIMILARITY SCALE AND  ITS 
ROBUSTNESS 
From studies already done we have determined that in the 
case of bird vocalisations, no two vocalisations are suffi-
ciently alike, that the software using the conventional similar-
ity scales cannot distinguish between them.  Even in the in-
stance where a given bird produces a string of seemingly 
repetitive vocalisations, there are subtle differences that can 
be detected.  Variability of vocalisations between individuals 
and groups geographically removed are even wider.  It is 
necessary therefore to have a method that can cope with this 
variation and still recognize the similarity of the vocalisations. 

 Additionally in the recording process there will be noise 
(often substantial) and distortion from various sources.  In 
this section we examine how the method deals with discrete 
variations and show that it is robust under the expected vari-
ability that might be encountered. 

In sound recognition, a known spectrogram stored in a PC 
memory is called here the “standard pattern”, and a compari-
son spectrogram is called “input pattern”.  The degree of 
likeness between the standard pattern and the input pattern is 

evaluated using a similarity scale.  If the similarity of the 
standard and input patterns is close, then those two patterns 
are considered to be in the same category and the input pat-
tern is recognized and classified.  The similarity is often 
measured as a “distance” between the two patterns.  Conven-
tionally, the similarity scales known as the Euclidean dis-
tance and cosine similarity have been widely used.  Section 
3.1 describes the shortcomings that are found in the conven-
tional similarity scales.  Furthermore, Sections 3.2 and 3.3 
describe new similarity scales called the “One-dimensional 
Geometric Distance (1-d GD)” and the “Two-dimensional 
Geometric Distance (2-d GD)” that have been developed by 
Jinnai and Boucher for improving the shortcomings. 

3.1. Euclidean distance and cosine similarity ---- 
Conventional similarity scale 

Conventional similarity scales Euclidean distance and cosine 
similarity compare the patterns using one-to-one mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Typical example of “difference” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Typical example of “wobble” 
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Figure 4. Shape changes of reference patterns 

 

The result of the one-to-one mapping is that input patterns 
with different shapes may have the same distance from the 
standard pattern when the spectrograms have the “difference” 
and “wobble”. 

The upper diagram of Figure 2 shows an example of the “dif-
ference” where the standard pattern has two peaks in the 
spectrogram, and input patterns 1, 2, and 3 have a different 
position on the first peak.  Note that the standard and input 
patterns have the same volume.  As shown in the bar graph at 
the bottom left of Figure 2, the Euclidean distances and co-
sine similarities e1, e2, and e3 have the relationship of 
e1=e2=e3 between the standard pattern and each of input pat-
terns 1, 2, and 3.  Therefore, input patterns 1, 2, and 3 cannot 
be distinguished. 

The upper diagram of Figure 3 shows an example of the 
“wobble” where the standard pattern has a flat spectrogram, 
input patterns 4 and 5 have the “wobble” on the flat spectro-
gram, and input pattern 6 has a single peak.  However, each 
pattern is assumed to have variable α in the relationship 
shown in Figure 3.  Therefore, the standard and input patterns 
always have the same volume.  As shown in the bar graph at 
the bottom left of Figure 3, the Euclidean distances and co-
sine similarities e4, e5, and e6 have the relationship of 
e4=e5=e6 between the standard pattern and each of input pat-
terns 4, 5, and 6.  Therefore, input patterns 4, 5, and 6 cannot 
be distinguished. 

3.2. One-dimensional geometric distance 

As an improvement, we have developed a new similarity 
scale called the Geometric Distance [11].  A similarity scale 
is a concept that should intuitively concur with the human 
concept of similarity in hearing and sight.  First we need to 
develop a mathematical model for the similarity scale so that 
we can perform numerical processing by computation.  In the 
Geometric Distance, a mathematical model of the similarity 
scale is proposed to improve the shortcomings that are found 
in the Euclidean distance, cosine similarity and others.  A 
mathematical model incorporating the following two charac-
teristics is used. 
< 1 > The distance metric must show good immunity to noise. 

< 2 > The distance metric must increase monotonically when 
a difference increases between peaks of the standard and 
input patterns. 
The bar graphs at the bottom right of Figures 2 and 3 express 
the mathematical model by figures.  Following on from 
above, a new algorithm based on one-to-many point mapping 
is proposed to realize the mathematical model.  This section 
describes the 1-d GD algorithm. 

Figures 4(a)-(e) respectively show typical examples of the 
standard and input patterns that have been created using the 
momentary power spectrum (frequency-power) of standard 
and input sounds.  Note that the power spectrum is generated 
from the output of filter bank with the m frequency bands.  
The i-th power spectrum values (where, i = 1, 2, … , m) are 
divided by their total energy, so that normalized power spec-
tra si and xi have been calculated.  At this moment, the stan-
dard and input patterns have the same area size.  Moreover, 
Figures 4(a)-(e) respectively show reference patterns that 
have the initial shape ri of a normal distribution. 

With the 1-d GD algorithm, a difference in shapes between 
standard and input patterns is replaced by the shape change of 
the reference pattern using the following equation. 

 (1) 

Next, we explain Eq. (1) using Figure 4. 
● Figure 4(a) gives an example of the case where standard 
pattern and input pattern have the same shape.  Because val-
ues ri of Eq. (1) do not change during this time, the reference 
pattern shown in Figure 4(a) does not change in the shape 
from the normal distribution. 
● Figures 4(b)-(d) respectively show examples exhibiting a 
small, medium, and large “difference” of peaks between the 
standard and input patterns.  If Eq. (1) is represented by the 
shapes, as shown in Figures 4(b)-(d), value ri decreases at 
peak position i of each standard pattern.  At the same time, 
value ri increases at peak position i of each input pattern. 
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Figure 5. Movement of reference pattern 

● Figure 4(e) typically shows the standard pattern having a 
flat shape and the input pattern where a “wobble” occurs in 
the flat shape.  Because values ri increase and decrease alter-
natively in Eq. (1) during this time, the reference pattern 
shown in Figure 4(e) has a small shape change from the nor-
mal distribution. 

For the reference pattern whose shape has changed by Eq. (1), 
the magnitude of shape change is numerically evaluated as 
the variable of moment ratio.  The moment ratio of the refer-
ence pattern can be calculated using the following equation. 

 

 

(2) 

 

 

Where, Li (i = 1, 2, … , m) is a deviation from the center axis 
of the normal distribution as shown in the reference pattern of 
Figure 4(a).  The moment ratio A is derived from the kurtosis 
from a statistical analysis.  If the shape of the reference pat-
tern follows the normal distribution, then A = 0.  If it has 
peakedness relative to the normal distribution, then A > 0.  
Alternatively, if it has flatness relative to the normal distribu-
tion, then A < 0.  Figures 4(a)-(e) show how A varies with ri. 
● In Figure 4(a), the values ri do not change.  The moment 
ratio becomes A = 0. 
● In Figure 4(b), the position i of the decreased ri  and that of 
the increased ri are close.  Because the effect of an increase 
and a decrease is canceled out, the moment ratio becomes  
A≈0. 
● In Figure 4(d), because the shape of reference pattern has 
flatness relative to the normal distribution, the moment ratio 
becomes A＜＜  0. 
● In Figure 4(c), because the shape of the reference pattern is 
an intermediate state between (b) and (d), the moment ratio 
becomes A < 0. 
● In Figure 4(e), the reference pattern has small shape change 
from the normal distribution, and the moment ratio becomes 
A ≈ 0. 
From Figures 4(a)-(d), we can understand that value | A | in-
creases monotonically according to the increase of the “dif-
ference” between peaks of the standard and input patterns.  
Also, from Figure 4(e), it is clear that  A ≈ 0 for the “wobble”. 

As shown in Figure 4, we have determined the moment ratio 
A by assuming that the center axis of the normal distribution 
locates at the center of standard and input patterns.  Next, as 
shown in Figure 5, we determine the amount of moment ratio 
Aj for each j in the case where the center axis of the normal 
distribution moves to any component position j (where, j = 1, 
2, … , m) of the standard and input patterns.  Using the m 
parts of the moment ratios Aj that we have obtained in Figure 
5, we can calculate the difference in shapes between standard 
and input patterns by the following equation and we define it 
as the “One-dimensional Geometric distance d ”. 

 

 (3) 

 

In this method, when a “difference” occurs between peaks of 
the standard and input patterns with a “wobble” due to noise 
or other non-linearity, the “wobble” is absorbed and the dis-

tance metric increases monotonically according to the in-
crease of the “difference”.  From the above description, we 
could verify that the 1-d GD algorithm matches the character-
istics < 1 > and < 2 > of the mathematical model.  In the actual 
1-d GD algorithm, we create a pair of reference patterns that 
have the initial shape of the normal distribution, because Eq. 
(2) cannot be defined if the value ri is negative [11]. 

3.3. Two-dimensional geometric distance ----                      
New similarity scale 

The 1-d GD algorithm is expanded to the 2-d GD algorithm.  
Figures 6 and 7 respectively show stylized examples of the 
standard and input patterns that have been created using the 
spectrogram (time-frequency-power) of standard and input 
sounds.  The (i1, i2)-th power spectrum values (where, time 
axis i1 = 1, 2, … , m1; frequency axis i2 = 1, 2, … , m2) are 
divided by their total energy, so that normalized power spec-
tra si1i2

 and xi1i2
 have been calculated.  At this moment, the 

standard and input patterns have the same volume size.  
Moreover, Figures 6 and 7 respectively show reference pat-
terns that have the initial shape ri1i2

 of a two-dimensional 
normal distribution. 

Figure 6 shows an example exhibiting a “difference” of peaks 
between the standard and input patterns.  Figure 7 shows the 
standard pattern having a flat shape and the input pattern 
where a “wobble” occurs in the flat shape.  We suppose that 
the standard and input patterns have the same volume.  With 
the 2-d GD algorithm, a difference in shapes between stan-
dard and input patterns is replaced by the shape change of the 
reference pattern using the following equation 
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(4) 
 

In Figure 6, the value of the reference pattern decreases at 
peak position of the standard pattern.  At the same time, the 
value of the reference pattern increases at peak position of the 
input pattern.  In Figure 7, because the values of the reference 
pattern increase and decrease alternatively, the reference 
pattern has a small shape change from the two-dimensional 
normal distribution. 

For the reference pattern whose shape has changed by Eq. (4), 
the magnitude of shape change is numerically evaluated as 
the variable of moment ratio using the following equation. 

 

(5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        Figure 6. Shape change of reference pattern (difference) 

However, the deviation Li shown in Figure 4(a) and Eq. (2) is 
replaced by a deviation Li1i2

 shown in Figure 6. 

Next, as shown in Figure 8, we determine the amount of 
moment ratio Aj1 j2

 for each (j1, j2) in the case where the cen-
ter axis of the two-dimensional normal distribution moves to 
various positions (j1, j2) relative to the standard and input 
patterns.  Using these moment ratios Aj1 j2

, we can calculate 
the difference in shapes between standard and input patterns 
by the following equation and we define it as the “Two-
dimensional Geometric Distance d ”. 

 

(6) 

 

Also, we can verify that the 2-d GD algorithm matches the 
characteristics < 1 > and < 2 > of the mathematical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 7. Shape change of reference pattern (wobble) 

  

 

 

 

 

 

 

 

 

 

 

Figure 8. Movement of reference pattern  
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Figure 11. Combination of two clusters

4. AUTOMATIC CLASSIFICATION FOR BIRD 
VOCALISATIONS 

Figure 9 shows a concept of the cluster analysis.  The similar 
images are classified into the same cluster using a similarity 
scale.  In conventional cluster analysis, the similarity scales 
known as the Euclidean distance and cosine similarity are 
widely used to measure likeness.  In this paper, we perform 
the cluster analysis using the 2-d GD instead of the conven-
tional similarity scales. 

We suppose that the N spectrograms are extracted from the N 
bird vocalisations and that the M clusters are obtained after 
classification, where N > M.  In our system, we perform clus-
ter analysis with the following processing procedure to clas-
sify the bird vocalisations automatically. 

(Step 1)  The value di j of the 2-d GD is calculated between 
the i-th spectrogram (i = 1, 2, … , N-1) and the j-th spectro-
gram ( j = i +1, … , N).  We obtain the NC2 pieces of the val-
ues di j of the 2-d GD and classify the set (spectrogram i, 
spectrogram j) that has the minimum distance value di j into 
one cluster.  As the result, we have the N-1 clusters. 

(Step 2)  As shown in Figure 10, if the cluster k and the clus-
ter l have the nk and nl spectrograms, respectively, then we 
define a distance    kl between these two “clusters” by the 
following equation. 

 

 
(7) 

 

Note that dikil
 is the value of the 2-d GD between the spec-

trogram ik (ik = 1, 2, … , nk) in the cluster k and the spectro-
gram i l  (i l  = 1, 2, … , n l) in the cluster l.  As shown in the 
left diagram of Figure 11, the distances  kl are calculated in 
each combination of the clusters by using Eq. (7).  As shown 
in the right diagram of Figure 11, we classify the set (cluster 
k, cluster l ) that has the minimum distance value   kl into one 
cluster. 

(Step 3)  The process of Step 2 is repeated.  If we have the M 
clusters, then we end the process. 

By using the above processing procedure, the similar spec-
trograms of the bird vocalisations are classified into the same 
cluster. 

 

5. THE BIOLOGICAL SIGNIFICANCE OF 
RELIABLE CLASSIFICATION OF 
VOCALISATION BEHAVIOUR 

Animal vocalisation behaviour plays a key role in evolution-
ary processes including species recognition and mate attrac-
tion (discussed in Collins 2004; Gerhardt & Bee 2006).  Fur-
thermore, in animals like song birds and crickets, there are 
frequently dialects or micro-geographic variation in vocalisa-
tion behaviour (Rothstein & Fleischer 1987; Simmons et al. 
2001; Zuk et al. 2001; Catchpole & Slater 2008; Colombelli-
Négrel 2008; Colombelli-Négrel et al. in press).  These dia-
lects may facilitate recognition among individuals of a local 
population that are adapted to a particular habitat and are 
genetically distinct from neighbouring populations (genetic 
adaptation hypothesis: Payne 1981; Rothstein & Fleischer 
1987; Simmons et al. 2001; Zuk et al. 2001; Slabbekoorn & 
Smith 2002, Nicholls & Goldizen 2006).  The characteristics 
of acoustic signals also provide vital cues for mate choice in  

 

 

 

 

 

Figure 9. Concept of cluster analysis 

 

 

 

 

 

 

 

 

 

Figure 10. Distance between two “clusters” 
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sexual selection (Nottebohm and Selander 1974, Appeltants 
et al. 2005, Catchpole & Slater 2008).  For example, numer-
ous studies have shown the role of acoustic signals in mate 
choice in crickets (Simmons et al. 2001; Simmons 2004; 
Scheuber et al. 2004), frogs (Gerhardt 1986, Robertson 1986, 
1990; Klump et al. 2004, Gerhardt 2005, Gerhardt & Bee 
2006), birds (McGregor & Krebs 1982, Patten et al. 2004) 
and mammals (Charlton et al. 2007).  Acoustic signals can 
reliably indicate the immune function of the caller in crickets 
and birds (Simmons et al. 2005; Tregenza et al. 2006, Mark-
man et al. 2008).  There is also compelling evidence that this 
sexual selection for acoustic signals can drive speciation in 
birds (Seddon et al. 2008).  In summary, given the impor-
tance of vocalisation behaviour for understanding evolution-
ary patterns and processes, it is vital that we apply reliable 
methods free from observer bias to interpret bird vocalisa-
tions and other forms of vocalisation behaviour. 

6. CONCLUSIONS AND FUTURE WORK 

We have proposed a new automatic classification system for 
bird vocalisations.  This software extracts the spectrogram 
from the bird vocalisation using the LPC spectrum analysis, 
and matches the images of the spectrogram between a stan-
dard and an input bird vocalisations using the 2-d GD.  Then, 
the software classifies the bird vocalisations using cluster 
analysis.  We expect that this will result in faster classifica-
tion and better classification than that which can be achieved 
by a human expert, especially given that the 1-d method has 
already proven itself to be comparable to a human expert.  

Finally, we describe future work.  We will continue to de-
velop commercial software that can be applied to various 
types of animal vocalisations, human voice and other sounds.  
We will carry out the classification experiments using various 
types of sounds and will verify the effectiveness of the pro-
posed method. 
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