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In our previous paper, a new similarity scale called the Geometric Distance was proposed.
With the conventional geometric distance algorithm, there are the following three short-
comings. 1. Since standard and input patterns are normalized to have the same area, a
pseudo difference in shapes occurs between them. 2. Since “shape variation” is calculated
in each combination of the standard and input patterns, the processing overhead increases
when the number of standard patterns increases. 3. Since reference patterns are eval-
uated for each movement position of a normal distribution, the computational memory
overhead increases when the number of components of standard and input patterns in-
creases. To counter these shortcomings, a new geometric distance algorithm is proposed.
1. It is derived without normalization of the standard and input patterns, so that the
pseudo difference in shapes is removed. 2. It reduces the processing overhead by sepa-
rating the calculation of “shape variation” into a registration process and a recognition
process. 3. It reduces the computational memory overhead by sharing a single reference
pattern. Experiments in vowel recognition were carried out using the same voice data as
the previous paper. At a mean of 5 dB SNR, the recognition accuracy improved from
78% to 82% over the conventional algorithm.
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1. Introduction

In pattern recognition, a shape of an input pattern is compared with that of a
standard pattern using a similarity scale. Traditionally, for the similarity scale, the
Euclidean distance and cosine similarity have been widely used.!"? In recent years,
various similarity scales have been proposed for comparing two patterns in speech
2,3,4,5,6,7,8,9,10 pattern classification'! and image retrieval.!?13:14:15

16 a new similarity scale called the Geometric Distance
was proposed. At that point, we initially developed a mathematical model incor-
porating the following two characteristics.

< 1> The distance metric must show good immunity to noise.

< 2> The distance metric must increase monotonically when a difference increases
between peaks of the standard and input patterns.

An algorithm based on a one-to-many point mapping was proposed to realize the
mathematical model. In the algorithm, the difference in shapes between the stan-
dard and input patterns is replaced by the shape change of a normal distribution,
and the magnitude of this shape change is numerically evaluated as a variable of
the moment ratio (“shape variation”) that is derived from the kurtosis.

With the above conventional algorithm, there are the following three shortcom-
ings. 1. Since the standard and input patterns are normalized to have the same
area, a pseudo difference in shapes occurs between the standard and input patterns
and the recognition performance of geometric distance becomes unpredictable. 2.
Since “shape variation” is calculated in each combination of the standard and in-
put patterns if we use multiple standard patterns and a single input pattern, the
processing overhead increases when the number of standard patterns increases. 3.
Since positive and negative reference patterns are evaluated for each movement po-
sition of the normal distribution, the computational memory overhead increases in
proportion to the square of the number of components of the standard and input
patterns.

recognition,
In our previous paper,

In this paper, we propose a new geometric distance algorithm that can realize
the above mathematical model and that can also improve the above shortcomings.
1. The new algorithm is derived without normalization of the standard and input
patterns, so that the pseudo difference in shapes is removed and the recognition per-
formance of geometric distance becomes stable. 2. The new algorithm reduces the
processing overhead during an input pattern recognition process by separating the
calculation of “shape variation” into a standard pattern registration process and an
input pattern recognition process. 3. The new algorithm reduces the computational
memory overhead by sharing a single reference pattern.

The proposed algorithm can be applied widely to pattern recognition such as
pattern classification or clustering and image retrieval using the distance between
histograms. This paper explains the technique using the same voice data and feature
parameters as those of the previous paper.'® The paper consists of the following
sections. Section 2 describes the shortcomings that are found in the conventional



A New Geometric Distance Method to Remove Pseudo Difference in Shapes 121

power (a) Same shape (b) Same shape + Noise
1 1o ¢
TN
<« <>
dy dy
Standard pattern Input pattern 1 Standard pattern Input pattern 2
—» frequency
(c) Same shape (d) Same shape + Noise
fn
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >
o)
&> <>
dy d,
Standard pattern Input pattern 3 Standard pattern Input pattern 4

Fig. 1. Pseudo difference in shapes.

algorithm. Section 3 describes the new algorithm, provides the evaluation results of
the processing overhead and the computational memory required for the algorithm,
describes numerical experiments, and describes that the algorithm performs well.
Section 4 describes the speech recognition tests that have been carried out, and
describes the stabilized recognition performance. Section 5 provides the conclusions
and touches on future work.

2. Conventional Geometric Distance Algorithm

With the conventional algorithm, the standard and input patterns are normalized
to have the same area. Then, a difference in shapes between standard and input
patterns is replaced by a shape change of a normal distribution. If this method is
used, a pseudo difference in shapes may occur between standard and input patterns
due to normalization of power spectrum. As an example, Figs. 1(a) and (b) show
the standard pattern, input patterns 1 and 2 having the same shape in the power
spectrum. In the input pattern 2, however, noise has been added to the power
spectrum in frequency band fy, and the input pattern 2 has been normalized to
have the same area as the standard pattern. As a result, a pseudo difference
in shapes occurs at the peaks of the standard pattern and the input pattern 2 as
shown in Fig. 1(b). Figs. 1(c) and (d) show another example of this. However,
the input pattern 4 has been normalized to have the same maximum value as
the standard pattern. After normalization, a pseudo difference § in shapes occurs
again at the peaks of the standard pattern and the input pattern 4 as shown in
Fig. 1(d). Because the pseudo difference in shapes always occurs regardless of
the use of any normalization method, it results in an actual shape change of the
normal distribution and the recognition performance of geometric distance becomes
unpredictable.

Moreover, with the conventional algorithm, we need to calculate the moment ra-
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tios (shape variation) in each combination of standard and input patterns if we use
multiple standard patterns and a single input pattern. Hence the processing over-
head increases when the number of standard patterns increases. If the calculation
of pattern recognition is separated into a standard pattern registration process and
an input pattern recognition process, then the moment ratios (shape variation) are
calculated during the input pattern recognition process. Therefore, the calculation
time of the input pattern recognition process increases in proportion to the number
of standard patterns.

However, with the conventional algorithm, we need to evaluate positive and
negative reference patterns for each movement position of the normal distribu-
tion. Therefore, the computational memory overhead increases in proportion to
the square of the number of components of the standard and input patterns.

Because of these shortcomings, we propose a new algorithm that we will intro-
duce in the next section.

3. New Geometric Distance Algorithm

In this section, we use the same mathematical model as the conventional algorithm.
We propose a new algorithm that can realize the mathematical model and that
can also improve the above shortcomings. Specifically, we use a weighting vector
that consists of a rate of change of the moment ratio, and create two weighted pat-
tern vectors by performing the product-sum operation using the weighting vector
and the standard pattern vector and the product-sum operation using the weight-
ing vector and the input pattern vector. Then, we use the angle between these
weighted pattern vectors as a new geometric distance. As a result, we can remove
the pseudo difference in shapes and stabilize the recognition performance of the
geometric distance. Also, we can reduce the processing overhead during the in-
put pattern recognition process and reduce the computational memory overhead
for the positive and negative reference pattern vectors. In the second half of this
section, numerical experiments are carried out using some geometric patterns with
the “difference” and “wobble”, and the proposed algorithm is confirmed to perform
well.

3.1. Properties of moment ratio

With the conventional algorithm, the difference in shapes between standard and
input patterns is replaced by the shape change of the normal distribution, and the
magnitude of this shape change is numerically evaluated as a variable of the moment
ratio. If variable u; is a discrete value, moment ratio A of function f(u;) can be
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Fig. 2. Change of moment ratio A.

calculated using the following equation.

{;ﬂui)}-{Z(ui)‘*-ﬂui)} §

i

{Dui)?- f(u»}

i

(1)

Then, numerical experiments are carried out to study the relationship between
moment ratio A and the increment value § of bar graphs seen in Figs. 2—4. The
upper side of graphs (a)—(c) of Figs. 2—4 shows the bar graphs each having m bars
whose height is the same as function value f(u;) of the normal distribution. Note
that m = 11 and the bar graphs are created by using the area of —2.10 < u; <
2.10 (¢ = 1) of the normal distribution.'® On bar graphs of Figs. 2(a)—(c), only a
single bar increases by value § in the center, an intermediate position, and an end
of the normal distribution. In Figs. 3(a)—(c), two bars of the graph increase by the
same value §. Also, in Figs. 4(a)—(c), only one bar increases by value § and another
bar increases by value 0.2 at the same time. Here, the moment ratio A is calculated
using Eq. (1) for the bar graph whose shape is changed as described above. The
obtained relationship between values A and ¢ is shown by graphs (i) to (ix) in the
lower side of graphs (a)—(c) of Figs. 2—4.

From graphs (i) to (iii) shown in Figs. 2(a)—(c), it is discovered that A = 0.0
if § = 0.0. Also, the value of A changes approximately linearly when value of §
increases. In Figs. 3(a)—(c), graphs (i)+(ii), (ii)+(iii), and (i)+(iii) are the results
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obtained by addition of graphs (i), (ii) and (iii) respectively. From these graphs, it
is discovered that graphs (iv), (v) and (vi) are approximated to respective graphs
(i)+(ii), (ii)+(iii), and (i)+(iii). Also, from Figs. 4(a)—(c), it is discovered that the
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gradients of graphs (vii), (viii) and (ix) are equal to those of graphs (i), (ii) and (iii)
respectively, and that the intercepts on the vertical axis are equal to the change
amounts of moment ratio A if § = 0.2 on graphs (ii), (iii) and (i) respectively.

From the above description, it is discovered that we can plot approximate graphs
(iv) to (ix) using graphs (i) to (iii) if we have already plotted graphs (i) to (iii)
using Eq. (1) in advance. In other words, if the rate of change g; (i=1,2,---,m)
of moment ratio A is calculated in advance based on the gradients of graphs (i) to
(iii), we can determine the product of g; multiplied by ¢; for each bar graph even
when multiple bar graphs change by different values §;. Also, we can calculate an
approximate value of moment ratio A by summing g;-0; for all ¢. This property
holds for all values of m and for any variance o2 of the normal distribution.

3.2. Creation of pattern vectors

Fig. 5 gives an example of the power spectrum of standard and input voices. Note
that the power spectrum is generated from the output of filter bank with the m
frequency bands (where, m is an odd number). If the i-th power spectrum values
(where, i = 1,2, --- ;m) of standard and input voices are s,; and z,; respectively,
we create an original standard pattern vector s, having s,; components, and an
original input pattern vector x, having z,; components, and represent them as
follows. In Eq. (2), the function of “T” means a transposed matrix.

So = (Sol 3802y 77" ySoiy Tt ;Som)T

$0:(m015x027"' s Loiy* " wrom)T (2)

Moreover, the component values s,; and x,; are divided by the summation of s,;
and the summation of x,; respectively, and normalized power spectra s; and x; have
been calculated. Then, we create a standard pattern vector s having s; components,
and an input pattern vector x having x; components, and represent them as follows.

8:(817827"' »Siy ", Sm

m:(l’l,l’g,"',l‘i,"',l’m)T (3)

If we assign constants ¢; and ¢, to the summation of s,; and the summation of x,;
respectively in Eq. (2), we can show the relationship between component values of
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Egs. (2) and (3) as follows.

Si = S0i/Cs
T; = Toi/Ca (1=1,2,3,---,m) (4)

Also, the component values s,; and z,; are divided by the maximum value of s,;
and the maximum value of z,; respectively, and normalized power spectra s, and
x} have been calculated. Then, we create a standard pattern vector s’ having s/
components, and an input pattern vector x’ having z, components, and represent
them as follows.

!
79
! -
i

T
m)

m)T ()

If we assign constants ¢, and ¢/, to the maximum value of s,; and the maximum

r __ ! !
8_(817827"'78 S

’

SN AN
€ —(1’1,1’2,"',1‘ T

value of z,; respectively in Eq. (2), we can show the relationship between component
values of Egs. (2) and (5) as follows.

i = 50i/C,

S
T = xpi/Cl (i=1,2,3,---,m) (6)

Egs. (2),(3) and (5) express the shapes of the power spectra of the standard voice and
input voice by the m pieces of component values of the pattern vector respectively.
Note that in this paper the width of each bar graph is 1/m for power spectrum
shown in Fig. 5. The area and the maximum values usually differ between s, and
o shown in Fig. 5. Meanwhile, the area of s and « are the same and the maximum
values of s’ and &’ are the same.
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3.3. Creation of weighting vector

From the conventional algorithm, as shown in Fig. 6(a), we created positive and

negative reference pattern vectors r;ﬂ and 7'5-7) having function values r?,? and

rj(.;) of the normal distribution as components for each movement position j, and

represented them as follows.

PO (D 0y
7“5'_) = (7“,(';),7“;), T ,7“](.;), T >T§;)]-)T (7)

(j:]-72)37"' 7m)

Figs. 6(a) and (b) show the rate of change of A (g, where a change of § occurs at
the k-th position, k =1,2,---,n; ) for a normal distribution and a single instance
of 6. Note that each bar graph has n; bars. The rate of change g;; is described by
the following equation.

gjk:A/(S (k:1)273;"')nj) (8)
(j:1)273)"'7m)

The gj(14n;)/2, 8j1 and g;n, correspond to the gradients of respective graphs shown
in the lower side of Figs. 2(a)—(c). Next, in Fig. 6(a), position k of the bar that
has increased by value § is scanned from 1 to n;, and Eq. (8) is calculated. Fig.
6(b) shows a bar graph of the calculated value gj;,, where § = 0.2. Here, we create
a weighting vector g; having g;; components, and represent it as follows.

g] = (gjlagj27"' 7gjk7"' 7gjnj)T (9)
(.7 = 172)37"' 7m)

Eq. (9) expresses the rate of change of moment ratio A by the m pieces of component
§.+) and 7“5._) are equivalent vectors in the initial state, the
weighting vector calculated from r?r) and the weighting vector calculated from 7'5-7)
are equal to each other. Thus, symbols (+) and (—) are omitted in Eq. (9). Also, the
curve shown in Fig. 6(b) is the envelope curve of the g, bar graph, that has been
calculated assuming the value n; is sufficiently large, and it is called “Weighting

curve” in this paper. As shown in Figs. 6(a) and (b), the normal curve corresponds

values of the vector. Asr

to the weighting curve, and the positive and negative reference pattern vectors
correspond to the weighting vector.

3.4. Approximate calculation of moment ratio

With the conventional algorithm, a difference in shapes between standard pattern
vector s and input pattern vector x has been replaced by the shape changes of

® and rgf) using the following

positive and negative reference pattern vectors r;
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equation.

For i=1,2,3,---,m;
when k=i—j+(1+n;)/2 (where,1<k<n;);
oif zi > s;, then i) «— rt)

G 1) o — s (10)

(j:172737"' ’m)

+ |z — si

oif x; <s; then r

With the conventional algorithm, moment ratios of r§.+) and rg._), whose shapes have

changed according to Eq. (10), have been calculated using the following equation.

5 reh S iz}

H_ k=1 k=1

AN= py 5 -3
{Z(ij)2 ' T'J(-:)}

k=1

{Z rﬁ-k)}-{Z(ij)‘*-r;k)}

- k=1 k=1

AD= - —> -3
w42}

k=1

(j:172737"' ’m)

In Section 3.1, we determined the product value gj;i:|z; — s;| using the rate of
change g;i of moment ratio A and increment |z; — s;|, and demonstrated that we
can calculate the approximate value of the moment ratio A by summing g;x«|2; — s;]
for all ¢. Thus, the values A;ﬂ and Agf) of Eq. (11) can be calculated approximately
using the following equation.

When k=i—j+(14+n;)/2 (where,1<k<n;);

e for all i where x; > s;
+
A; ) ~ Zg]’k-|$i — Si|
i=1
e for all i where x; < s;
AV =3 gjieei — sil (12)
i=1

(j:172737"' ’m)
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If value of k does not satisfy 1 < k < nj, we assume g;, = 0. Next, we consider
the signs and replace |z; — s;| by (z; — s;), and rewrite Eq. (12) as follows.

When k=i—j+(14+n;)/2 (where,1<k<n;);

e for all i where x; > s;
A§+) ~ +Zg]~k-(xi — Si)
i=1
e for all i where x; < s;
Ag._) =Y gike(wi — si) (13)
i=1
(] = 1)273)"' )m)

The approximate value of moment ratio can be calculated by product-sum operation
using Eq. (13), instead of calculating the moment ratio directly using Eq. (11).

3.5. Approximate calculation of shape variation

From the conventional algorithm, the difference in shapes between standard and
input patterns has been calculated using the following equation, and it has been
defined as “Shape variation D;”.

D; = A9 — A0 (G=1,2,3,-,m) (14)

Thus, the value D; of Eq. (14) can be calculated approximately by substituting Eq.
(13) into Eq. (14) as follows.

When k=i—j+(1+n;)/2 (where,1<k<n;);

Dy~ gipe(zi — )
=1

= gikwi— > gjkrsi (15)
=1 =1

(j:172737"' ’m)

From Eq. (15), it is discovered that the value D; can be separated into the product-
sum operation using the component value g;i of weighting vector and the com-
ponent value z; of input pattern vector, and the product-sum operation using the
component value g;i and the component value s; of standard pattern vector.
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3.6. Creation of weighted pattern vectors

We assign s,(;) and z,(;) to the two product-sum operations given by Eq. (15)
respectively, and represent them as follows.

When k=i—j+(1+n;)/2 (where,1<k<n;);
Sg(j) = Zg,’k-sz'
i=1

Te() = D Bik'Ti (16)
i=1
(.7 = 172)37"' 7m)

Then, we create a weighted standard pattern vector sg having sy(;) components,
and a weighted input pattern vector &g having xg ;) components, and represent
them as follows.

T
Sg = (Sg(1) > Sa(2)>" " Sa(4) """+ Sx(m) )
Tg = (Tg(1), Tg(2)s " Tals)s " ’xg(m))T (17)
From Eqs. (15) and (16), the value D; can be represented approximately as follows.
Dj %l‘g(j) _Sg(j) (] = 1,2,3,--- ,m) (18)

From Eq. (18), it is discovered that the value D; can be obtained by subtracting
the component value s, ;) of weighted standard pattern vector from the component
value xy(;) of weighted input pattern vector.

3.7. Approximate calculation of geometric distance

Using the conventional algorithm, we have calculated the difference in shapes be-
tween standard and input patterns using the following equation and we have defined
it as the “Geometric distance d”.

Thus, the value d of Eq. (19) can be calgllated approximately by substituting Eq.
(18) into Eq. (19) as follows. Note that d is an approximate value of the geometric
distance d.

m

d~ Z(xg(j) —sg())> =d (20)

Jj=1

As described above, the value d can be calculated by using Eqgs. (3), (9), (16), and
(20) sequentially. From Egs. (16) and (20), we can find that the value d can be
separated into the product-sum operation using the standard pattern vector and

the product-sum operation using the input pattern vector.
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3.8. Numerical experiments of geometric distance d

To confirm the approximation accuracy of d shown in Eq. (20), we performed numer-
ical experiments to calculate the geometric distances'® d; to dg and the approximate
values Jl to JG of the standard and input patterns shown in Fig. 7. However, we
have developed Eqs. (7) and (9) by using values n; = 27 (6; = n;/(4.2m) = 0.58)'¢
that are fixed regardless of movement position j of the normal distribution. Figs.
8(a) and (b) show the results of experiments. We can find that values d; to dg and
Jl to JG are almost identical.

3.9. Creation of original and weighted pattern vectors

We assign s.q(j) to the product-sum operation using the component value g;;. of
weighting vector and the component value s,; of original standard pattern vector
given by Eq. (2), and assign x,,(;) to the product-sum operation using the compo-
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nent value g;; and the component value z,; of original input pattern vector, and
represent them as follows.

When k=i—j+(1+n;)/2 (where,1<k<n;);
Sog(j) = Zgjk'Soi
i=1

Tog(j) = Zgjk'ﬂfoi (21)
=1

(j:172737"' ’m)

Then, we create an original and weighted standard pattern vector sog having s.4(;)
components, and an original and weighted input pattern vector xog having .4 ()
components, and represent them as follows:
_ T
Sog = (Sog(l) ;Sog(2)7' ) Sog(j);' ) Sog(m) )

Log = (mog(l)amog(Z)a' *Log(5) " mog(m))T (22)

Eq. (22) shows the original and weighted pattern vectors that are created without
normalization of the power spectrum. Also, we assign s;(j) to the product-sum
operation using g;i and s} given by Eq. (5), and assign mé(j) to the product-sum
operation using g;, and z}, and represent them as follows.

When k=i—j+(14+n;)/2 (where,1<k<n;);
Sk() = D BikeS|
i=1

Ty(j) = D Bk T (23)
i=1

(j:]-72)37"' 7m)

Then, we create a weighted standard pattern vector sfg having s!’%r (j) components,
and a weighted input pattern vector @, having :v!’g (j) components, and represent
them as follows:
T
8 = (8501) 2852 >S5 Se(m))

Ty = (Th1), Ty > Ty()r " Tg(am)) (24)

’
g

Eq. (24) shows the weighted pattern vectors that are created with normalization of
power spectrum using their maximum values.
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Fig. 9. Relationship among weighted pattern vectors.

3.10. Relationship among weighted pattern vectors

Eq. (4) is substituted into Eq. (16), and the following equation is obtained using
Eq. (21).

When k=i—j+(1+n;)/2 (where,1<k<n;);
Sg(j) = igjk'(soi/cs)
i=1
= Sog(j)/Cs
To(i) = D Bik+(oi/Ca)
i=1

= xog(j)/cw (25)
(.] = 172737"' 7m)

Similarly, Eq. (6) is substituted into Eq. (23), and the following equation is obtained
using Eq. (21).

Sg(j) = Sog(i)/Cs
m:,?:(j) = leog(j)/c; (1=1,2,3,---,m) (26)

Fig. 9 is a schematic diagram of the m-th dimensional pattern space, and it shows
six vectors, those are sog and og given by Eq. (22), sg and x4 given by Eq. (17),
and s, and x given by Eq. (24). Note that all vectors begin at origin 0. From Eq.
(25), we can understand that sg(;) and s,g(;) are proportional with constant 1/c,
and that x,(;) and z,4;) are proportional with constant 1/c,. Also, from Eq. (26),
we can understand that s!’%r ") and s,g(;) are proportional with constant 1/c,, and
that x;(j) and ;) are proportional with constant 1/c),. Therefore, as shown in
Fig. 9, vectors s'g, sg and Sog have the same direction. Also, vectors a:'g, g and
Tog have the same direction.



134 M. Jinnai, S. Tsuge, S. Kuroiwa and M. Fukumi

3.11. Derivation of new geometric distance

From Eq. (20), it is clear that the geometric distance d can be calculated as the Eu-
clidean distance between the weighted standard pattern vector sg and the weighted
input pattern vector &g. Thus, in Fig. 9, we determine the distance between end
points of sg and x4 as value d. Also, if we use Eq. (5) instead of Eq. (3) to determine
the standard and input pattern vectors, the geometric distance d' can be calculated
as the Euclidean distance between s; and @,. Thus, in Fig. 9, we determine the

distance between end points of s'g and :L';, as value d’. From Fig. 9, it is clear that

values d and d' are changed according to the normalizing method used. To improve
on this, we can calculate an angle d4 between sog and xog shown in Fig. 9 by the
following equation and we define it as the new “Geometric distance d4”.

Z Sog(j) “Tog(4)
j=1
D (Sox1)” | D (@ox()?

Jj=1 Jj=1

cos(da) =

The geometric distance d 4 is not affected by the normalizing method used. If d4 is
used, we can expect that the shortcoming of the pseudo difference in shapes between
the standard and input patterns due to normalization of power spectrum is improved
and the recognition performance becomes stable. Therefore, in order to confirm that
dy matches the mathematical model, we perform numerical experiments in Section
3.14. Also, to confirm the stabilized recognition performance of dy, we carry out
the speech recognition tests in Section 4.

3.12. Sharing weighting vector

In Eq. (7), we have created the m pieces of positive and negative reference pattern
vectors (normal curves). Fig. 10(a) gives an example of three normal curves among
these curves. Note that the center axis of the normal curve is drawn in component
position j. In Eq. (9), we have created the m weighting vectors (weighting curves)
from Eq. (7) as shown in Fig. 6. The weighting curves created from every normal
curve in Fig. 10(a) are shown in Fig. 10(b). This paper uses a fixed bar width of
each graph for both standard and input patterns even when the variance value of
the normal distribution has changed. In which case, as shown in Fig. 10(b), the
maximum and minimum values of those weighting curves are the same respectively,
and those weighting curves match when expanded or compressed in the direction
of the horizontal axis. Thus, we thought to reduce the computational memory
overhead by sharing a single weighting vector instead of m vectors. Fig. 10(c)
shows the weighting curve that has been created from the normal curve of variance
02 = 1. Fig. 10(c) also shows a bar graph having the same height as the function
value of weighting curve. Here, the right half of the weighting curve is used to create
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Fig. 10. Sharing weighting vector.

a bar graph for reducing the computational memory overhead. And we create a

weighting vector g having gr, (where, kg = 1,2,---,n) components whose values
are the same as the height of bar graph, and represent it as follows.
g:(g17g27"'agkoa"'agnaoa"'aO)T (28)

However, we assume that value n is sufficiently large when compared with the
number of components n; of Eq. (9). Also, if n < ko, we insert an appropriate
number of values g, = 0. Eq. (28) is the weighting vector that represents Eq. (9),
and Eq. (28) consists of both n components expressing the shape of weighting curve
and an appropriate number of component values 0.

As shown by the thick-line weighting curve of Fig. 10(b), the difference between
component numbers i and j is (i — j) for the weighting vector g; given by Eq. (9).
The difference between the component number at the center and the component
number at the rightmost end position is (n; — 1)/2. On the other hand, as shown
in Fig. 10(c), the difference between component numbers kg and 1 is (ko — 1) and
the difference between component numbers n and 1 is (n — 1) for the weighting
vector g given by Eq. (28). As described above, each weighting curve of Fig. 10(b)
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Standard pattern Normal distribution Input pattern
Eq.(2) | Eacs I I Eq.(2)
So = (301-,3027'"»soi;"'vsom)T‘ ‘ g= (gl;gZ,"'sgkm'"sgn70-,"';0)T‘ ‘ Lo = (I01;517027'"7517oi1"'-,1'om)T
2(n—-1) . .
} k0:1+(7(zv_1;'|7/*]‘ }
Eq.(29) ’ Eq.(29)

m m
Sog(j) = E 8ko * Soi Tog(s) = g 8ko * Loi
=1 i=1

(=123, -m)

Eq.(27)

Fig. 11. Flowchart for calculating geometric distance d 4.

can be obtained by expanding or compressing the weighting curve of Fig. 10(c) in
the direction of the horizontal axis. Therefore, if the component number ¢ of Figs.
10(a) and (b) corresponds to ko of Fig. 10(c), the ratio of (i — j) to (n; — 1)/2 is
equal to the ratio of (kg — 1) to (n —1). 2(i —j)/(n; — 1) = (ko — 1)/(n — 1) is
satisfied. If we consider that the weighting curve is bilaterally symmetric, we can
calculate value kg using equation ko = 1+ 2|i — j|-(n — 1)/(n; — 1). Note that ko
is rounded to an integer value. If value n is sufficiently large, we can reduce the
rounding error. In this way, the values s,z (;) and x,4(;) can be calculated by using
the following equation instead of Eq. (21).

2(n-1) . .
When ko =1+ ——=+|i —j|;
(nj —1)
Sog(j) = Zg’%'soi
i=1
Tog(s) = D Bha"Toi (29)
i=1

(j:172737"' ’m)

Note that the component number & of Eq. (21) corresponds to ko of Fig. 10(c)
or Eq. (29). Using Eq. (29), we can calculate both s,z;) and z,g;) by simply
creating a single g instead of creating g; for each movement position j of the normal
distribution. In this manner, the computational memory of g is fixed to the value
n in Eq. (28). While in Eq. (9), the memory of g; increased in proportion to the
square of the value m (in proportion to the value n; xm). This paper assumes that
n = 2101. As described above, we can reduce the computational memory overhead
by sharing a single weighting vector.
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Fig. 12. Diagram for calculating product-sum value.

3.13. Procedure for calculating geometric distance da

Fig. 11 shows a flowchart for calculating the new geometric distance dy. From
Fig. 11, it is clear that we can calculate the value s,q(;) in advance during the
standard pattern registration process. Moreover, Figs. 12(a) and (b) show the flow
of product-sum operations given by Eq. (29). Note that the curve in the figure is
the weighting curve shown in Fig. 10(c), and symbol v/ is a multiplier and symbol
Y is an adder. In Fig. 12(a), by using multiplier 57, we calculate the product gg,+Sei
using the component value g, of weighting vector and the component value s,; of
original standard pattern vector. By using adder X, we calculate the product-sum
by addition of the product gi,s.; for ¢ (where, i = 1,2,--- ,m), and use it as the
component value s, ;) of original and weighted standard pattern vector. Similarly,
in Fig. 12(b), we calculate the original and weighted input pattern vector by the
product-sum operation using the original input pattern vector and the weighting
vector. From Figs. 12(a) and (b), it is discovered that the values s,4(;) and og(;)
are calculated from s,; and z,;, respectively, by weighting of the weighting curve.
Figs. 13(a) and (b) show a comparison between calculation amounts of the con-
ventional algorithm and the new algorithm during the input pattern recognition
process. From the conventional algorithm, if we calculate the geometric distances d
between N standard patterns and a single input pattern, we need to calculate Eqs.
(10), (11), (14) and (19) sequentially in each combination of standard and input
patterns during the input pattern recognition process. With the new algorithm,
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(a) Conventional algorithm (b) New algorithm
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Fig. 13. Flowcharts for conventional algorithm and new algorithm
during input pattern recognition process.

we can obtain the N parts of dy values by performing a single time calculation
of T,g(;) and an N times of cosine similarity calculation during the input pattern
recognition process. From Figs. 13(a) and (b), it is discovered that we can reduce
the processing overhead during the input pattern recognition process.

3.14. Numerical experiments of geometric distance d

To confirm that the algorithm of geometric distance d4 matches the mathematical
model that we have assumed in Section 1, we performed numerical experiments to
calculate the geometric distances d 4 of the standard and input patterns shown in
Fig. 7. Note that we used the same n; value as Section 3.8. Also, note that we
read geometric distances di to d6 in Fig. 7 as new geometric distances da1 to dag
respectively.

Figs. 14(a) and (b) show the results of experiments. From the figures, we can
find that das < das in Fig. 14(b) although dy = d5 in Fig. 8(b). Here, m = 11 for
the standard and input patterns shown in Fig. 7. From the experiments, we found
that the larger value was switched between ds4 and da5 when value m increased.
Also, the two graphs became close to position d 44 shown in Fig. 14(b). However, the
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Fig. 14. Calculation in geometric distance d 4.

difference between d44 and d a5 is small because we use m = 23 in the experiments
of vowel recognition performed in the next section. From the numerical experiments
described above, we can verify that the algorithm of geometric distance d 4 matches
the characteristics <1> and <2> of the mathematical model.

4. Experiments of Vowel Recognition

To confirm that the geometric distance d4 removes the pseudo difference in shapes
and the recognition performance becomes stable, we have performed the speech
recognition experiments using the geometric distance d4 and actual voices. We
used the same Japanese speech and feature parameters as those used in the experi-
ments with the conventional geometric distance algorithm.'® Similar to the speech
recognition experiments of the conventional algorithm, we performed the experi-
ments in the following two stages.

(Stage 1) First, we optimized the variance of the normal distribution using the
“vowel in the continuous speech” that is different from the voice data for the eval-
uation experiments.

(Stage 2) Next, we performed the evaluation experiments for the “clean vowel” and
the “vowel with noise” by using the optimized normal distribution.

4.1. Variance optimization of normal distribution

Similar to the speech recognition experiments of the conventional algorithm, we
determine the optimum value of the variance o of the normal distribution (the op-
timum value of w)'% using the “vowel in the continuous speech”. This is equivalent
to determining the optimum value of the positive and negative reference pattern
vectors given by Eq. (7) and to determining the optimum value of the weighting
vector g; given by Eq. (9). And we convert g; into g as shown in Figs. 10(b) and
(c) and reduce the computational memory overhead. The value w is incremented
by 0.2 from 3.0 to 23.0, and the recognition accuracy of the “vowel in the continuous
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Table 1. Vowel recognition accuracy with new geometric distance d4. (w = 11.0)

Babble Car Exhibition Subway  Mean

Clean 99.97%
SNR 20 dB | 99.93% 99.88%  99.22% 99.49%  99.63%
SNR 10 dB | 98.80% 98.80%  88.77% 93.36% 94.93%
SNR 5dB| 92.34% 88.10%  67.96% 80.03% 82.11%

speech” is calculated. Fig. 15 shows the relationship between the value w and the
recognition accuracy obtained by the above process. From Fig. 15, it is discovered
that the recognition accuracy becomes maximum if w = 11.0. Thus, we determine
w = 11.0 as the optimum value and use it in the following evaluation experiments.

4.2, Fvaluation experiments and their results

We have performed the evaluation experiments for the “clean vowel” and the “vowel
with noise” using the value w = 11.0 determined in the previous section. Table 1
shows the result of vowel recognition using the new geometric distance d4. From
Table 1, it is learned that the recognition accuracy with d, is equalized regardless
of noise type!” when compared with the conventional geometric distance d.'® In
particular, the recognition accuracy of “Exhibition5dB” has improved from 61.42%
t0 67.96%. Also, “mean” of 5 dB SNR has improved from 78.04% to 82.11%. Thus
we confirm that the geometric distance d4 removes the pseudo difference in shapes
and the recognition performance becomes stable.

4.3. Verification of optimum value

Table 1 shows the result of recognition accuracy using the optimum value w = 11.0
that we have determined from Fig. 15. Here, in order to verify that the value
w = 11.0 is truly the optimum value, the value w is incremented by 0.2 from 3.0 to
23.0 and the recognition accuracy of the “clean vowel” and the “vowel with noise”
is calculated. Figs. 16 and 17 show the calculated relationship between the value
w and the recognition accuracy for the input patterns of the “clean vowel” and the
“vowel with 5 dB noise”, respectively. From Figs. 16 and 17, we can find that the
recognition accuracy is almost maximum in the value w = 11.0.

5. Conclusions and Future Work

We have used the weighting vector that consists of the rate of change of the moment
ratio, and created two weighted pattern vectors by performing the product-sum op-
eration using the weighting vector and the standard pattern vector and the product-
sum operation using the weighting vector and the input pattern vector. Then, we
have proposed a new algorithm that uses the angle between these weighted pattern
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Fig. 17. Vowel recognition accuracy with new geometric distance d 4.

vectors as the geometric distance. At this time, we have evaluated the processing
overhead and the computational memory required for the new algorithm. Also, we
have performed the vowel recognition experiments, and confirmed that the recog-
nition performance becomes stable.

Finally, we describe future work. For vowel recognition, we used the same w
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value (w = 11.0) for the optimum value regardless of the first, second and third
formants when detecting the amount of “difference” between the formants. We will
optimize the variance of the normal distribution for each formant and improve the
recognition accuracy in future studies. Also, this paper uses the geometric distance
for one-dimensional patterns. We extend the concept of Geometric Distance so that
it can be applied to two-dimensional patterns such as voice prints and images.
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